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Where We’re Going
● Binomial Heaps (Today)

● A simple, flexible, and versatile priority 
queue.

● Lazy Binomial Heaps (Today)
● A powerful building block for designing more 

advanced data structures.
● Fibonacci Heaps (Tuesday)

● A famous and theoretically excellent priority 
queue.



  

Review: Priority Queues



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Mt. Giluwe

4,368



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Mt. Giluwe

4,368

Pico de Orizaba

5,636



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Mt. Giluwe

4,368

Pico de Orizaba

5,636

Mt. Sidley

4,285



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Mt. Giluwe

4,368

Pico de Orizaba

5,636

Mt. Sidley

4,285

Kilimanjaro

5,859



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Mt. Giluwe

4,368

Pico de Orizaba

5,636

Kilimanjaro

5,859



  

Priority Queues
● A priority queue is a data 

structure that supports 
these operations:
● pq.enqueue(v, k), which 

enqueues element v with 
key k;

● pq.find-min(), which 
returns the element with the 
least key; and

● pq.extract-min(), which 
removes and returns the 
element with the least key.

● They’re useful as building 
blocks in a bunch of 
algorithms.

Pico de Orizaba

5,636

Kilimanjaro

5,859



  

Binary Heaps
● Priority queues are often implemented as binary heaps.

● enqueue and extract-min run in time O(log n);
find-min runs in time O(1).

● These heaps are surprisingly fast in practice. It’s tough 
to beat their performance!

● d-ary heaps outperform binary heaps for well-tuned 
values of d, and otherwise only sequence heaps are 
known to specifically outperform this family.

● (Is this information incorrect as of 2025? Let me know 
and I’ll update it.)

● In that case, why do we need other heaps?



  

Priority Queues in Practice
● Many graph algorithms directly rely on priority queues 

supporting extra operations:
● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their elements 

into a single priority queue. (MSTs via Cheriton-Tarjan)
● pq.decrease-key(v, k'): Given a pointer to element v already in 

the queue, lower its key to have new value k'. (Shortest paths 
via Dijkstra, global min-cut via Stoer-Wagner)

● pq.add-to-all(Δk): Add Δk to the keys of each element in the 
priority queue, typically used with meld. (Optimum branchings 
via Chu-Edmonds-Liu)

● In lecture, we'll cover binomial heaps to efficiently support 
meld and Fibonacci heaps to efficiently support meld and 
decrease-key.

● You’ll design a priority queue supporting meld and add-to-
all on the next problem set.
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Meldable Priority Queues



  

Meldable Priority Queues
● A priority queue supporting the meld operation is 

called a meldable priority queue.
● meld(pq₁, pq₂) destructively modifies pq₁ and pq₂ 

and produces a new priority queue containing all 
elements of pq₁ and pq₂.
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Efficiently Meldable Queues
● Standard binary heaps do not efficiently 

support meld.
● Intuition: Binary heaps are complete binary 

trees, and two complete binary trees cannot 
easily be linked to one another.



  

What things can be combined together 
efficiently?



  

Adding Binary Numbers
● Given the binary representations of two 

numbers n and m, we can add those 
numbers in time O(log m + log n).

Intuition: 
Writing out n in 

any “reasonable” 
base requires 

Θ(log n) digits.
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A Different Intuition
● Represent n and m as a collection of “packets” whose 

sizes are powers of two.
● Adding together n and m can then be thought of as 

combining the packets together, eliminating duplicates
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Building a Priority Queue
● Idea: Store elements in “packets” whose sizes are 

powers of two and meld by “adding” groups of packets.
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Building a Priority Queue
● What properties must our packets have?

Sizes must be powers of two.
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Building a Priority Queue
● What properties must our packets have?

● Sizes must be powers of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of 

each packet.
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Inserting into the Queue
● If we can efficiently meld two priority queues, we 

can efficiently enqueue elements to the queue.
● Idea: Meld together the queue and a new queue 

with a single packet.
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Inserting into the Queue
● If we can efficiently meld two priority queues, we 

can efficiently enqueue elements to the queue.
● Idea: Meld together the queue and a new queue 

with a single packet.

27

28

18

45

84

62

23

59

53

14

58

26

Time required:
O(log n) fuses.



  

Deleting the Minimum
● Our analogy with arithmetic breaks down when we try 

to remove the minimum element.
● After losing an element, the packet will not necessarily 

hold a number of elements that is a power of two.
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Deleting the Minimum
● If we have a packet with 2k elements in it and 

remove a single element, we are left with 2k – 1 
remaining elements.

Idea: “Fracture” the packet into k – 1 smaller 
packets, then add them back in.
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Fracturing Packets
● We can extract-min by fracturing the packet 

containing the minimum and adding the fragments 
back in.
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Fracturing Packets
● We can extract-min by fracturing the packet 

containing the minimum and adding the fragments 
back in.

● Runtime is O(log n) fuses in meld, plus fracture cost.
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Building a Priority Queue
● What properties must our packets have?

● Size is a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of each packet.
● Can efficiently “fracture” a packet of 2k nodes into 

packets of 20, 21, 22, 23, …, 2k-1 nodes.
● Question: How can we represent our packets to support 

the above operations efficiently?

Propose a solution!

https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev


  

Binomial Trees
● A binomial tree of order k is a type of tree recursively 

defined as follows:
A binomial tree of order k is a single node whose 

children are binomial trees of order 0, 1, 2, …, k – 1.
● Here are the first few binomial trees:
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1 0

3

Why are these called 
binomial trees? Look 
across the layers of 

these trees and see if 
you notice anything!



  

Binomial Trees
● What properties must our packets have?

● Size must be a power of two.
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets 

of 20, 21, 22, 23, …, 2k-1 nodes. 
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Binomial Trees
● What properties must our packets have?

● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
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The Binomial Heap
● A binomial heap is a collection of heap-ordered 

binomial trees stored in ascending order of size.
● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.
– Fuses O(log n + log m) trees. Cost: O(log n + log m). Here, 

assume one binomial heap has n nodes, the other m.
● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).
● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).
● pq.extract-min(): Find the min, delete the tree root, then 

meld together the queue and the exposed children.
– Total time: O(log n).
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Draw what happens if we enqueue the numbers
1, 2, 3, 4, 5, 6, 7, 8, and 9 into a binomial heap.

Do this, and tell us what
the roots of the resulting

trees are.

Answer at
https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev
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Where We Stand
● Here’s the current 

scorecard for the 
binomial heap.

● This is a fast, 
elegant, and 
clever data 
structure.

● Question: Can we 
do better?

Binomial Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).



  

Time-Out for Announcements!



  

Problem Set Four
● Problem Set Three was due today at 1:00PM.

● Need more time? Use a late day to extend the deadline 
by 24 hours, or two late days to extend it by 48 hours.

● Problem Set Four (Balanced Trees) goes out 
today. It’s due on Tuesday, May 13th at 1:00PM.
● Play around with balanced binary search trees and 

data structure isometries.
● Use augmented trees to solve problems much faster 

than seems feasible at first glance.
● As usual, ping us if you have any questions!



  

Back to CS166!



  

Where We Stand
● Theorem: No 

comparison-based 
priority queue structure 
can have enqueue and 
extract-min each take 
time o(log n).

● Proof: Suppose these 
operations each take 
time o(log n). Then we 
could sort n elements by 
perform n enqueues 
and then n extract-
mins in time o(n log n). 
This is impossible with 
comparison-based 
algorithms. ■

Binomial Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).

Why? Answer at
https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev
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Where We Stand
● We can’t make both 

enqueue and extract-
min run in time o(log n).

● However, we could 
conceivably make one of 
them faster.

● Question: Which one 
should we prioritize?

● Probably enqueue, 
since we aren’t 
guaranteed to have to 
remove all added items.

● Goal: Make enqueue 
take time O(1).

Binomial Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).



  

Where We Stand
● The enqueue 

operation is 
implemented in 
terms of meld.

● If we want 
enqueue to run 
in time O(1), 
we’ll need meld 
to take time O(1).

● How could we 
accomplish this?

Binomial Heap
● enqueue: O(log n)
● find-min: O(log n)
● extract-min: O(log n)
● meld: O(log m + log n).



  

Thinking With Amortization



  

Refresher: Amortization
● In an amortized efficient data structure, some operations 

can take much longer than others, provided that 
previous operations didn’t take too long to finish.

● Think dishwashers: you may have to do a big cleanup at 
some point, but that’s because you did basically no work 
to wash all the dishes you placed in the dishwasher.

w
or

k

time



  

Lazy Melding
● Consider the following lazy melding approach:

To meld together two binomial heaps,
just combine the two sets of trees together.

● Intuition: Why do any work to organize keys if 
we’re not going to do an extract-min? We’ll worry 
about cleanup then.
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Lazy Melding
● If we store our list of trees as circularly, doubly-linked 

lists, we can concatenate tree lists in time O(1).
● Cost of a meld: O(1).
● Cost of an enqueue: O(1).

● If it sounds too good to be true, it probably is. 😃
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Lazy Melding
● Imagine that we implement extract-min the same 

way as before:
● Find the packet with the minimum.
● “Fracture” that packet to expose smaller packets.
● Meld those packets back in with the master list.

● What happens if we do this with lazy melding?
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Lazy Melding
● Imagine that we implement extract-min the same 

way as before:
● Find the packet with the minimum.
● “Fracture” that packet to expose smaller packets.
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Each pass of finding the 
minimum value takes time 

Θ(n) in the worst case. 
We’ve lost our nice 

runtime guarantees!



  

Washing the Dishes
● Every meld (and enqueue) creates some “dirty dishes” 

(small trees) that we need to clean up later.
● If we never clean them up, then our extract-min will be 

too slow to be usable.
● Idea: Change extract-min to “wash the dishes” and make 

things look nice and pretty again.
● Question: What does “wash the dishes” mean here?
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Washing the Dishes
● With our eager meld (and enqueue) strategy, our priority 

queue never had more than one tree of each order.
● This kept the number of trees low, which is why each 

operation was so fast.
● Idea: After doing an extract-min, do a coalesce step to 

ensure there’s at most one tree of each order. This gets us to 
where we would be if we had been doing cleanup as we go.
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At this point, the mess is 
cleaned up, and we’re 

left with what we would 
have had if we had been 

cleaning up as we go.



  

Where We’re Going
● A lazy binomial heap is a binomial heap, modified 

as follows:
● The meld operation is lazy. It just combines the two 

groups of trees together.
● After doing an extract-min, we do a coalesce to combine 

together trees until there’s at most one tree of each order.
● Intuitively, we’d expect this to amortize away nicely, 

since the “mess” left by meld gets cleaned up later 
on by a future extract-min.

● Questions left to answer:
● How do we efficiently implement the coalesce operation?
● How efficient is this approach, in an amortized sense?



  

Coalescing Trees
● The coalesce step repeatedly combines 

trees together until there’s at most one 
tree of each order.

● How do we implement this so that it runs 
quickly?
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Coalescing Trees
● Observation: This would be a lot easier 

to do if all the trees were sorted by size.
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● Observation: This would be a lot easier 
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Coalescing Trees
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Coalescing Trees
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Coalescing Trees
● Observation: This would be a lot easier 
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Coalescing Trees
● Observation: This would be a lot easier 

to do if all the trees were sorted by size.
● We can sort our group of t trees by size 

in time O(t log t) using a standard sorting 
algorithm.

● Better idea: All the sizes are small 
integers. Use counting sort!



  

Coalescing Trees
● Here is a fast implementation of coalesce:

● Distribute the trees into an array of buckets big enough 
to hold trees of orders 0, 1, 2, …, ⌈log₂ (n + 1)⌉.

● Start at bucket 0. While there’s two or more trees in the 
bucket, fuse them and place the result one bucket 
higher.
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Analyzing Coalesce
● How much time does it take to coalesce a 

group of t trees?
● Time to create the array of buckets: O(log n).
● Time to distribute trees into buckets: O(t).
● Time to fuse trees: O(t + log n)

– Number of fuses is O(t), since each fuse decreases 
the number of trees by one. Cost per fuse is O(1).

– Need to iterate across O(log n) buckets.
● Total work done: O(t + log n).
● In the worst case, this is O(n).



  

The Story So Far
● A binomial heap with lazy melding has these 

worst-case time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(n).

● But these are worst-case time bounds. Intuitively, 
things should nicely amortize away.
● The number of trees grows slowly (one per enqueue).
● The number of trees drops quickly (at most one tree 

per order) after an extract-min).



  

An Amortized Analysis
● This is a great spot to use an amortized analysis 

by defining a potential function Φ.
● In each case, the idea is to clearly mark what 

“messes” we need to clean up.
● In our case, each tree is a “mess,” since our 

future coalesce operation has to clean it up.
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An Amortized Analysis
● Recall: We assign amortized costs as

amortized-cost = real-cost + k · ΔΦ,
where ΔΦ = Φafter – Φbefore.
● Increasing Φ (adding more trees) artificially boosts costs.
● Decreasing Φ (removing trees) artificially lowers costs.

● Let’s work out the amortized costs of each operation on a 
lazy binomial heap.
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Analyzing an Insertion
● To enqueue a key, we add a new binomial tree 

to the forest.
Actual time: O(1). ΔΦ: +1
Amortized time: O(1).
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Analyzing an Insertion
● To enqueue a key, we add a new binomial tree 

to the forest.
● Real cost: O(1). ΔΦ: +1
● Amortized cost: O(1).
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Analyzing a Meld
● What is the amortized cost of meld?
● The real cost is O(1).
● What’s ΔΦ?
● That’s trickier – there are two separate 

collections of trees here.

Set Φ to the number of trees in
the lazy binomial heap.
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Analyzing a Meld
● What is the amortized cost of meld?
● Common trick: When working with mergeable 

data structures, define Φ globally across all 
instances of the data structure.

Set Φ to the number of trees in
the lazy binomial heap.
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Analyzing a Meld
● What is the amortized cost of meld?
● Common trick: When working with mergeable 

data structures, define Φ globally across all 
instances of the data structure.

Set Φ to the number of trees in
all lazy binomial heaps.
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Analyzing a Meld
● What is the amortized cost of meld?
● Common trick: When working with mergeable 

data structures, define Φ globally across all 
instances of the data structure.

● Now ΔΦ = 0 and the amortized cost is O(1).

Set Φ to the number of trees in
all lazy binomial heaps.
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Analyzing extract-min



  

Find tree with 
minimum key.

Work: O(t)
Φ = t

Remove min.
Add children to

list of trees.

Work: O(log n)

Run the coalesce 
algorithm.

Work: O(t + log n)
Φ = O(log n)

Work: O(t + log n) ΔΦ: O(-t + log n)



  

Find tree with 
minimum key.

Work: O(t)
Φ = t

Remove min.
Add children to

list of trees.

Work: O(log n)

Amortized cost: O(log n).

Run the coalesce 
algorithm.

Work: O(t + log n)
Φ = O(log n)



  

The Final Scorecard
● Here’s the final 

scorecard for our 
lazy binomial heap.

● These are great 
runtimes! We can’t 
improve upon this 
except by making 
extract-min worst-
case efficient.
● This is possible! 

Check out 
bootstrapped skew 
binomial heaps for 
details!

Lazy Binomial Heap
● Insert: O(1)
● Find-Min: O(1)
● Extract-Min: O(log n)*
● Meld: O(1)

 

* amortized



  

Major Ideas from Today
● Isometries are a great way to design data 

structures.
● Here, binomial heaps come from binary 

arithmetic.
● Designing for amortized efficiency is 

about building up messes slowly and 
rapidly cleaning them up.
● Each individual enqueue isn’t too bad, and a 

single extract-min fixes all the prior 
problems.



  

Next Time
● The Need for decrease-key

● A powerful and versatile operation on 
priority queues.

● Fibonacci Heaps
● A variation on lazy binomial heaps with 

efficient decrease-key.
● Analyzing Fibonacci Heaps

● A clever analysis.
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